Motivation:
- Millions of people suffer from limb impairment that limits their dexterity
- Tasks that do not seem challenging such as:
 - Unlocking doors
 - Turning lights on/off
 - Changing channels of a TV
- Become extremely difficult to do and leads to diminished quality of life
- EEG technology is becoming more advanced
- Smart devices are becoming more popular and less expensive
- Internet of Things
 - Everything can be connected

Objective:
Offer more independence, and improve quality of life.
- Use a headset with EEG sensors to measure and record brain signals
- Map the signals to specific cognitive commands using pattern recognition
- Use these commands to control smart devices

Methods & Process
- **Step one: Virtual Reality**
 - Proof of concept
 - Cost effective way to test design
 - Gives feedback on headset connectivity, latency, and bugs
- **Step two: Work with real device**
 - Control smart devices with 4 commands
 - Connect multiple devices

Detected Cognitive Commands:
- **Emotiv EPoC+ Headset**
 - **EEG Data**
 - 14 EEG sensors
 - 0.2-45Hz range at 128 samples per second
 - 2.4Ghz wireless connectivity
 - 16 bit ADC
 - 12 hour batter life

Emotiv’s SDK
- Contains powerful pattern recognition software
 - Training module included to help map cognitive thoughts
- Contains a comprehensive API written in C++
 - Allows access to generated events
- Ability to analyze EEG raw data
 - Helps detects which thoughts have less overlap
 - Can help combat false positives
- Muscle movements are easier to detect
 - Blinks, or smiles
- Amplitude of thoughts are relatively small

Virtual Reality:
- **Creating Models**
 - Used Autodesk modeling software developed by Autodesk
 - Focused on interactive objects, e.g. lights, doors, and TV.
 - Basic models for functionality

Building an Interactive Environment:
- Used Unity3D game developing engine
 - Allows user to interact with objects
 - Scripts written in C# language.

Displaying Virtual Reality
- Initially used Oculus Rift
- Switched to Samsung Gear

Real Devices:
- **Overview**
 - Needs to work with multiple devices
 - Distribute commands to devices that are not in general vicinity
 - Needs to be scalable

Smart Home Network
- **COGNITIVE CONTROL**
 - Push?
 - Node
 - Server
 - Smart Devices
 - Yes
 - Restart
 - No

Accomplishments:
- Successful at detecting thoughts and using them as input
- Created small virtual environment for testing
- Cognitive Control
 - Written in C++
 - Handles generated events
 - Combats false positive events
- Cognitive Connect
 - Written “golang”
 - Scalable
 - Connects smart devices
 - Distributes commands

Challenges Faced:
- False positive events occur often and can cause fatigue
- Connectivity between user and headset varies
- Cognitive Control code is not one size fits all, specific to each user
- Oculus Rift induces motion sickness
- Time consuming to build models for VR

Future Work:
- A method for selecting a specific device among multiple devices, some ideas
 - Motion detector
 - Camera
 - RSSI signal
- Security precautions must be taken to ensure user safety
- Virtual Reality models and actions
- Test with virtual smart home with real patients to get feedback on the headset

Sponsored By:

Acknowledgments:
We would like to thank Dr. Sudeep Pasricha for making the project possible. The team also thanks Keysight Technologies for their support.