Wolf Eye
Robotic Laser Calibration
Kevin Ball, Kaden Strand, Asa Graf

What’s The Point?
- Wolf wants to use a laser distance sensor
- A laser sensor cannot be used without first being calibrated
 - **Problem:** A laser beam has no physical point to calibrate
 - **Our Solution:** Create a routine to calibrate the laser
 - Uses distance data from laser sensor to calibrate
 - Exploits geometry of rectangular plate

Tool Center Point (TCP)
- Endpoint of tool connected to robot
- Robot “knows” how the tool is mounted
- Ability to rotate arm while holding TCP position constant in space
 - Calibrate TCP within laser beam
 - Constant TCP position = constant distance data

Automated Sensing Techniques
- Accurate welding depends on sensing technologies
 - **Trade offs:** Speed, Accuracy, Cost

Keyence IL-300 Spot Sensor

Completed Objectives
- **Electrical Schematics**
 - Create AutoCAD schematic for Keyence IL-300 Sensor connections
- **Sensor Wiring**
 - Mount and wire Keyence sensor into ABB robotic system
- **Mathematical Calibration Theory**
 - Develop algorithm for calibration program
- **Learn to Program in RAPID**
 - Become fluent in the ABB program language, RAPID and use it for calibration
- **Working Calibration Routine**
 - Implement calibration algorithm in RAPID programming language
- **Optimization and Testing**
 - Improve and test calibration routine for speed and versatility
- **System Integration**
 - Package code for use in commercial systems

Project Continuation
- Use the laser sensor in tandem with a welding arm
 - Laser identification of weld joints:
 - T-Joints
 - Groove Joints
 - Corner Joints