Spatial quantification of non-aqueous phase liquid (NAPL) contaminants in frozen soil cores using magnetic resonance imaging (MRI)

Saeed Kiaalhosseini, Tom Sale, and Jens Blotevogel
Department of Civil and Environmental Engineering, Colorado State University

Abstract. Resolving spatial variations in subsurface contaminant concentrations is often critical to optimal design of remediation systems. Conventional soil coring of unconsolidated sediments leads to drainage and redistribution of fluids during sample withdrawal and storage. Moreover, extraction and conventional analytical testing of contaminated soils (e.g., solid-liquid extraction followed by gas chromatography) is inadequate because of redistribution and volatilization of contaminants during processing. Here, we present a novel approach of using magnetic resonance imaging (MRI) for scanning of frozen soil cores, using trichloroethene (TCE) as the model contaminant. Cryogenic coring has the potential to prevent fluid displacement. MRI can provide information on the qualitative and quantitative spatial distribution of non-aqueous phase liquid (NAPL) contaminants. Initial results indicate that strong MRI signals of water-bound hydrogen overwhelm the MRI signals of TCE-bound hydrogen at ambient temperature (~ 20°C). However, when the soil is frozen at -20°C, TCE remains in liquid phase (melting point of TCE is -73°C) and thus detectable by MRI, while the water is now frozen, leading to signal suppression of the water-bound hydrogen. Furthermore, comparison of known and measured TCE concentrations shows close agreement (approximately 90%). The results confirm the ability of MRI method to discriminate between water and TCE in frozen cores, thus allowing for a sensitive spatial analysis of contaminant distribution. Overall, this novel approach has the potential to enable high-throughput soil core analysis, lowering the cost of site investigation while providing an improved basis for remediation planning.